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Abstract: A non-inertial sensing approach for an Acoustic Vector Sen-
sor (AVS), which utilizes eddy-current displacement sensors and operates
well at Ultra-Low Frequencies (ULF), is described here. In the past,
most ULF measurements (from mHertz to approximately 10 Hertz) have
been conducted using heavy geophones or seismometers that must be in-
stalled on the seafloor; these sensors are not suitable for water column
measurements. Currently, there are no readily available compact and
affordable underwater AVS that operate within this frequency region.
Test results have confirmed the validity of the proposed eddy-current
AVS design and have demonstrated high acoustic sensitivity.
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1. Introduction

Oceanographers and geophysicists have an ongoing interest in exploring underwater acous-
tic processes at infrasound frequencies, for example, for monitoring natural events and for
communication.1–3 At present, though, measurements at Ultra-Low Frequency (ULF)
(from mHertz to 10 Hertz) are difficult due to sensing limitations.

Existing, or prototyped, underwater acoustic vector sensors (AVS)4–7 are often
designed as neutrally buoyant rigid bodies having built-in inertia-type sensing elements,
such as accelerometers or moving coil geophones. These sensors operate from tens, or
hundreds, of Hertz to approximately 10,000 Hz; they lose considerable sensitivity at
ULF, primarily due to the fundamentals of inertial sensing.

Here a non-inertial-sensing concept for an AVS, specifically designed to oper-
ate at ULFs, is presented.

2. Inertial and non-inertial sensing

A typical AVS consists of a neutrally buoyant (or nearly so) body that surrounds an
imbedded accelerometer or geophone.4–7 The body oscillates due to incident acoustic
wave with velocity V0, which is equal to the fluid particle velocity of the incident
wave; the body is often modeled as a neutrally buoyant sphere.6,9 The essential part of
the imbedded transducer is a proof mass. As the body moves in response to the inci-
dent wave, the proof mass also moves in proportion to its inertia, thus “inertial
sensing.”

Gabrielson et al.6 and McConnel7 presented a thorough analysis of such a sys-
tem. A simplified mechanical diagram of an inertial sensor is shown in Fig. 1(a).7 Here
mS is the mass of the buoyant body, m0 is the mass of the displaced fluid, ma is the
added mass of fluid, Mt is the transducer proof (inertial) mass, and Ct and Rt are the
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compliance and the damping constant of the proof mass suspension, respectively. The
buoyant body is constrained with a compliant suspension having the compliance Cs and
damping constant Rs.

The inertial approach described here allows for measurement of the relative
velocity between the proof mass and the sphere, that is, the sensor output is propor-
tional to VS�Vt. Following McConnel,7 the normalized (with respect to particle veloc-
ity V0 in the incident acoustic wave) velocity response of the inertial sensor can be
expressed as

Vs�Vt
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are the resonance frequencies of the

proof mass and buoyant body (including the added mass); ft¼Rt=2xtMt and fs
¼Rs=2xs(msþma) are the damping ratios of the proof mass and the buoyant body
suspensions, respectively.

Using formula (1) it can be shown that the response of the inertial sensor will
be significantly degraded at frequencies below the proof mass resonance frequency, see
Fig. 2.

The AVS velocity response can, however, be significantly improved by utiliz-
ing non-inertial sensing, that is, with direct measurements of the buoyant body motion
from a displacement sensor positioned outside the body, as illustrated in Fig. 1(b). The
velocity response of this non-inertial sensor is determined by the following formula:
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and clearly provides a dramatic improvement in the low frequency response, as illus-
trated in Fig. 2.

In calculating the velocity responses, as per formulas (1) and (2), the following
values for a typical geophone were used; a proof mass of Mt¼ 24 grams, a resonance fre-
quency of xt=2p¼ 14 Hz, a damping ratio of ft¼ 0.34, and a total weight of 110 grams. In
order to satisfy the neutral buoyancy condition, given the geophone’s total weight, the ra-
dius of a spherical housing had to be no less than 3 cm. Hence, the sphere would have a
total dynamic mass of ms þma¼ 170 grams. For both inertial and non-inertial sensors

Fig. 1. Mechanical diagrams of inertial, (a), and non-inertial, (b), acoustic vector sensors with external suspen-
sion (compliance CS and damping Rs).
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identical suspensions were used, having a resonance frequency of xs=2p¼ 1 Hz, and a
damping ratio of fs¼ 0.02. For a neutrally buoyant sphere, the ratio (m0þma)=(msþma)
is exactly unity.

The non-inertial sensing approach offers additional improvements over con-
ventional inertial sensing. For example, restrictions on the minimum size of the buoy-
ant body are removed, as no sensing mechanism is required inside. Non-inertial sensing
eliminates any wiring to the body, which often interferes with oscillatory motion.

Furthermore, at very low, and ultra-low frequencies, it is much more advanta-
geous to measure acoustic particle displacement, n, rather than velocity or acceleration,
since the response of the non-inertial displacement sensor increases as frequency
decreases, n � V=x.

3. Eddy-current displacement sensing

Various non-contact direct displacement sensing techniques exist: laser-based interferomet-
ric or time-of-flight sensors, capacitive, inductive, optical, and eddy-current (EC) sensors.
For the application of interest here, EC sensors have many advantages. EC sensors work
well in water and are insensitive to varying static pressures within the water column; they
are stable with temperature, have no moving parts, and have a very small form factor
(thus, weight), they are relatively inexpensive, extremely sensitive, and typically possess
very low electronic noise floors, even at frequencies down to DC.

An EC sensor consists of an electric coil (probe coil), which is energized by a
high-frequency (hundreds of kHertz to MHertz range) carrier signal, which then creates
an EC field to any nearby, electrically conductive, nonmagnetic surface. The eddy cur-
rents generate a secondary magnetic field that interacts with the field produced by the
probe coil. The magnetic field interactions are highly dependent on the distance between
the probe and the target. As the separation distance changes, the electronics sense the
change in the field and produce a voltage output that is proportional to the change in
distance between the probe and the target. Top quality EC sensors can measure sub-
nanometer displacement amplitudes over a broad range of frequencies.10–12 The low
minimum detectable signal levels are achieved, in part, from heterodyne measurements;
that is, the measured signal modulates a high-frequency carrier, essentially eliminating
1=f noise.

Another advantage of the non-inertial EC sensor is that it does not need to
employ the mechanical motion of the proof mass, as commonly done with inertial

Fig. 2. AVS velocity responses for inertial (dashed line) and non-inertial (solid line) sensors, per Eqs. (1) and (2).
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sensors. Hence, an EC sensor does not have associated mechanically induced thermal
noise.

Lacking these two major noise sources at low frequencies, the EC sensor noise
is primarily determined by the thermal noise13 of the probe coil and is proportional to
the coil resistance R, which is quite low, typically only a few ohms. As a result, high-
performance, commercial off-the-shelf EC displacement sensors have a displacement
resolution of approximately 0.013 nm=

ffiffiffiffiffiffiffi
Hz
p

(0.028 nm=
ffiffiffiffiffiffiffi
Hz
p

below 10 Hz, MicroEpsi-
lon model DT3703).10

4. Experimental verification of an ultra-low frequency, non-inertial prototype
acoustic vector sensor

A proof-of-concept, non-inertial, acoustic vector sensor (AVS) was built around the
Micro-Epsilon 3700 series EC displacement sensor (diameter 4 mm, length 20 mm)
and a hollow, near neutrally buoyant, aluminum sphere (19 mm in diameter). These
components were housed in a plastic cube (each side of length 12.7 cm), with the
sphere suspended as a pendulum on two thin strings, Fig. 3. Calibration measurements
were conducted at the Naval Undersea Warfare Center (NUWC) Division, Newport,
RI, using the Low Frequency Facility (LOFAC) System L test vessel15 also shown in
the Fig. 3. This large, horizontally mounted, stainless steel tank has an internal diame-
ter of 38 cm and a length of 243 cm. It is terminated at both ends with independently
controlled low-frequency sound projectors. The tube is also equipped with an array of
six reference hydrophones, which are positioned along the length. The measured EC
sensor output, normalized by P=qc (where P is the amplitude of the acoustic pressure
measured by the reference tube hydrophone adjacent to the sensor and q and c are
water density and sound speed), is shown in Fig. 4(a). As expected, the sensor displace-
ment response increases as the frequency decreases. The narrow peak in the response,
slightly below 1 Hz, is due to the resonance of the sphere’s suspension.

Because the Micro-Epsilon EC sensor had a known DC sensitivity of 5 V=mm, it
was possible to determine the absolute value of the measured sphere displacement within the
tank. Fig. 4(b) provides an example of the spectral output of the EC sensor for a signal at
0.25 Hz. Also shown (dashed line) is the ambient spectral noise floor, as measured within the
tube.

5. Summary

The non-inertial acoustic vector sensor concept appears to have many attributes, par-
ticularly with acoustic applications at low and ultra-low frequencies. The prototyped
sensor has reasonable acoustic sensitivity, works well in water, is temperature stable,

Fig. 3. (Color online) Proof-of-concept EC sensor prototype diagram and photograph within the low frequency
calibration tube.
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and has an excellent form factor. Measurements completed at the LOFAC System L
test vessel, NUWC Division Newport, confirmed the ability of the EC sensor to detect
acoustic signals below 1 Hz at displacement levels of fractions of nanometers.

Difficulties remain in configuring the proof-of-concept EC sensor into a
rugged, fieldable, ULF AVS. Of primary concern is the ability to design a suitable,
extremely low resonant suspension, or mounting scheme, that allows for measurement
of all three orthogonal components of acoustic particle displacement. In addition, an
AVS would require the incorporation of a pressure-sensing hydrophone, with compara-
ble sensitivity. The authors are examining these sensor issues, as well as others, and
look forward to presenting their findings in the near future.
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